Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Oncolytics ; 28: 307-320, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36938545

RESUMEN

Notch activation complex kinase (NACK) is a component of the Notch transcriptional machinery critical for the Notch-mediated tumorigenesis. However, the mechanism through which NACK regulates Notch-mediated transcription is not well understood. Here, we demonstrate that NACK binds and hydrolyzes ATP and that only ATP-bound NACK can bind to the Notch ternary complex (NTC). Considering this, we sought to identify inhibitors of this ATP-dependent function and, using computational pipelines, discovered the first small-molecule inhibitor of NACK, Z271-0326, that directly blocks the activity of Notch-mediated transcription and shows potent antineoplastic activity in PDX mouse models. In conclusion, we have discovered the first inhibitor that holds promise for the efficacious treatment of Notch-driven cancers by blocking the Notch activity downstream of the NTC.

2.
Dis Model Mech ; 15(6)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35195687

RESUMEN

Breast cancer stem cells (BCSCs) are a major cause of therapy resistance and tumour progression. Currently, their regulation is not entirely understood. Previous work from our laboratory demonstrated a context-specific pro-tumorigenic role for AMP-activated protein kinase (AMPK) under anchorage-deprivation and mammosphere formation, which are hallmarks of BCSCs. Therefore, we investigated the role of AMPK in the maintenance of BCSC state/function. AMPK depletion reduces serial sphere formation in vitro and tumour initiation in vivo. Intriguingly, tumour-derived cell analysis using stem cell markers and functional assays revealed that AMPK is required for the maintenance of BCSC populations in vivo. AMPK promotes the expression of stemness genes such as NANOG, SOX2 and BMI1 through the transcriptional upregulation of TWIST via promoter acetylation. Further, AMPK-driven stemness plays a critical role in doxorubicin resistance. Significantly, AMPK activity increased after chemotherapy in patient-derived tumour samples alongside an increase in stemness markers. Importantly, AMPK depletion sensitises mouse tumours to doxorubicin treatment. Our work indicates that targeting of AMPK in conjunction with regular chemotherapy is likely to reduce the stem cell pool and improve chemosensitivity in breast cancers.


Asunto(s)
Neoplasias de la Mama , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Medicamentos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Células Madre Neoplásicas/patología
3.
Cell Commun Signal ; 19(1): 96, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34551776

RESUMEN

BACKGROUND: Notch signaling drives many aspects of neoplastic phenotype. Here, we report that the Integrator complex (INT) is a new component of the Notch transcriptional supercomplex. Together with Notch Activation Complex Kinase (NACK), INT activates Notch1 target genes by driving RNA polymerase II (RNAPII)-dependent transcription, leading to tumorigenesis. METHODS: Size exclusion chromatography and CBF-1/RBPJ/Suppressor of Hairless/Lag-1 (CSL)-DNA affinity fast protein liquid chromatography (FPLC) was used to purify Notch/CSL-dependent complexes for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Chromatin immunoprecipitation (ChIP) and quantitative polymerase chain reaction (qPCR) were performed to investigate transcriptional regulation of Notch target genes. Transfection of Notch Ternary Complex components into HEK293T cells was used as a recapitulation assay to study Notch-mediated transcriptional mechanisms. Gene knockdown was achieved via RNA interference and the effects of protein depletion on esophageal adenocarcinoma (EAC) proliferation were determined via a colony formation assay and murine xenografts. Western blotting was used to examine expression of INT subunits in EAC cells and evaluate apoptotic proteins upon INT subunit 11 knockdown (INTS11 KD). Gene KD effects were further explored via flow cytometry. RESULTS: We identified the INT complex as part of the Notch transcriptional supercomplex. INT, together with NACK, activates Notch-mediated transcription. While NACK is required for the recruitment of RNAPII to a Notch-dependent promoter, the INT complex is essential for RNAPII phosphorylated at serine 5 (RNAPII-S5P), leading to transcriptional activation. Furthermore, INT subunits are overexpressed in EAC cells and INTS11 KD results in G2/M cell cycle arrest, apoptosis, and cell growth arrest in EAC. CONCLUSIONS: This study identifies the INT complex as a novel co-factor in Notch-mediated transcription that together with NACK activates Notch target genes and leads to cancer cell proliferation. Video abstract.


Asunto(s)
Carcinogénesis/genética , Endorribonucleasas/genética , Neoplasias/genética , Receptor Notch1/genética , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Proliferación Celular/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/genética , Complejos Multiproteicos/genética , Neoplasias/patología , Interferencia de ARN , ARN Polimerasa II/genética
4.
Cancer Res ; 81(12): 3347-3357, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33820800

RESUMEN

In many human cancers, deregulation of the Notch pathway has been shown to play a role in the initiation and maintenance of the neoplastic phenotype. Aberrant Notch activity also plays a central role in the maintenance and survival of cancer stem cells (CSC), which underlie metastasis and resistance to therapy. For these reasons, inhibition of Notch signaling has become an exceedingly attractive target for cancer therapeutic development. However, attempts to develop Notch pathway-specific drugs have largely failed in the clinic, in part due to intestinal toxicity. Here, we report the discovery of NADI-351, the first specific small-molecule inhibitor of Notch1 transcriptional complexes. NADI-351 selectively disrupted Notch1 transcription complexes and reduced Notch1 recruitment to target genes. NADI-351 demonstrated robust antitumor activity without inducing intestinal toxicity in mouse models, and CSCs were ablated by NADI-351 treatment. Our study demonstrates that NADI-351 is an orally available and potent inhibitor of Notch1-mediated transcription that inhibits tumor growth with low toxicity, providing a potential therapeutic approach for improved cancer treatment. SIGNIFICANCE: This study showcases the first Notch1-selective inhibitor that suppresses tumor growth with limited toxicity by selectively ablating cancer stem cells.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Neoplasias Esofágicas/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Receptor Notch1/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Apoptosis , Proliferación Celular , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Femenino , Humanos , Ratones , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Biosci ; 36(5): 809-16, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22116278

RESUMEN

We report studies on loss of heme at or below pH 3.0 from two clinically important hemoglobin variants, HbE and HbS, in the presence and absence of phopholipid membranes. The kinetics of heme loss has been studied at pH 3.0 to simulate the same at a faster rate than at physiological pH, for spectroscopic investigation. Results obtained from the study clearly establish the probable fate of the lost heme to partition into the phospholipid bilayer independent of the pH range. This is also of particular importance to membranes containing the aminophospholipid and cholesterol which are predominantly localized in the inner leaflet of erythrocytes. Absorption measurements indicated such loss of heme when the Soret peak at 415 nm blue-shifted to 380 nm at pH 3.0. The extent of this blue shift decreased from 35 nm to (approx.) 15 nm in the presence of small unilammelar vesicles of both dimyristoyl- and dioleoyl-based phosphatidylcholine and phosphatidylethanolamine, indicating partitioning of the released heme in the membrane bilayer. The kinetics of heme loss was faster from HbE than HbA and HbS, obeying first-order reaction kinetics. Released heme could be involved in the premature destruction of erythrocytes in hemoglobin disorders.


Asunto(s)
Hemo/química , Hemoglobina E/química , Hemoglobina Falciforme/química , Fosfolípidos/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Unión Proteica , Liposomas Unilamelares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...